Équivalence des distances

Différentes notions d'équivalence de distances sont utilisées en topologie, une branche des mathématiques concernant l'étude des déformations spatiales par des transformations continues (sans arrachages ni recollement des structures).

Étant donné un espace topologique métrisable (X, T), on peut trouver diverses distances qui définissent la même topologie T. Par exemple, la topologie usuelle de ℝ peut être définie par la distance d : (x, y) ↦ |x – y|, mais aussi par d / (1 + d), ou tout multiple de d par un réel strictement positif. Il faut donc préciser les « équivalences » entre de telles distances.

Définitions

Deux distances d1 et d2 sur un même ensemble X sont dites :

Toutes ces relations entre distances sont des relations d'équivalences.

Exemples

L'exemple suivant[1] permet de mettre en évidence la non-équivalence des différentes notions d'équivalences décrites ci-dessus : on peut munir ℝ des quatre distances :

; ; ; .

On vérifie alors que les distances d1 et d2 sont topologiquement équivalentes mais ne sont pas uniformément équivalentes (bien qu'elles aient mêmes suites de Cauchy), que les distances d1 et d3 sont uniformément équivalentes[2] mais ne sont pas bornologiquement équivalentes[3], puis que les distances d3 et d4 sont bornologiquement équivalentes[2] mais ne sont pas Lipschitz-équivalentes[3].

Notes et références

  1. Y. Sonntag, Topologie et analyse fonctionnelle.
  2. Ceci reste vrai pour les distances associées de même à n'importe quel espace métrique (E, d1).
  3. Cela est seulement dû au choix d'une distance d1 non bornée.

Articles connexes

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Sharealike. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.