Amplificateur opérationnel

Un amplificateur opérationnel (aussi dénommé ampli-op ou ampli op, AO, AOP[1], ALI[2] ou AIL[3]) est un amplificateur différentiel : c'est un amplificateur électronique qui amplifie une différence de potentiel électrique présente à ses entrées. Initialement, les AOP ont été conçus pour effectuer des opérations mathématiques dans les calculateurs analogiques : ils permettaient d'implémenter facilement les opérations mathématiques de base comme l'addition, la soustraction, l'intégration, la dérivation et d'autres. Par la suite, l'amplificateur opérationnel est utilisé dans bien d'autres applications comme la commande de moteurs, la régulation de tension, les sources de courants ou encore les oscillateurs[4],[5],[6],[7].

Vous lisez un « article de qualité ».
Pour les articles homonymes, voir Amplificateur.
Différents modèles d'amplificateurs opérationnels.
La représentation schématique d'un amplificateur opérationnel varie suivant les pays.

Physiquement, un amplificateur opérationnel est constitué de transistors, de tubes électroniques ou de n'importe quels autres composants amplificateurs. On le trouve communément sous la forme de circuit intégré.

Le gain en tension très important d'un amplificateur opérationnel en boucle ouverte fait de lui un composant utilisé dans une grande variété d'applications. Certains amplificateurs opérationnels, de par leurs caractéristiques (temps de montée, faible distorsion harmonique, etc.), sont spécialisés dans l'amplification de certains types de signaux comme les signaux audio ou vidéo.

Historique

Le calculateur analogique ELWAT.

On doit le terme d'amplificateur opérationnel (Operational Amplifier en anglais) à John R. Ragazzini en 1947[8],[9]. L'invention originale vient d'un de ses étudiants, Loebe Julie[10]. Les amplificateurs opérationnels ont été initialement développés à l'ère des tubes électroniques, ils étaient alors utilisés dans les calculateurs analogiques. Actuellement, les amplificateurs opérationnels sont disponibles sous forme de circuits intégrés, bien que des versions sous forme de composants discrets soient utilisées pour des applications spécifiques.

AOP à tubes K2-W.

Le premier AOP disponible en grande série fut le K2-W de la société GAP/R[11] en [12],[13]. À l'époque, le K2-W était vendu pour une vingtaine de dollars US[12]. Le premier AOP intégré disponible en grande quantité, à la fin des années 1960, fut l'AOP bipolaire Fairchild μA709, créé par Bob Widlar en 1965. En 1968, le μA709 fut remplacé par le μA741 qui offrait de meilleures performances tout en étant plus stable et plus simple à mettre en œuvre[14],[15]. Bien qu'offrant des performances similaires à celles de son principal concurrent le LM101 de National Semiconductor, le μA741 est devenu un standard car il disposait en interne d'une capacité de compensation rendant ainsi le μA741 plus simple à utiliser que le LM101[15]. Le prix des AOP a beaucoup évolué à ses débuts durant les années 1960 : en 1963, le prédécesseur du μA709, le μA702, vaut entre 150 et 350 $ (dollars américains) ; en 1965, le µA709 est mis en vente à 70 $ l'unité, mais son prix baisse vite pour atteindre $ en 1967 ; en 1969, le prix moyen d'un AOP était de $ [16]. Ainsi, en six ans, le prix des AOP a été divisé par plus de cent tandis qu'ils sont de plus en plus performants, robustes et simples d'utilisation.

Un µA741 en boîtier TO5.

Le μA741 est encore fabriqué de nos jours et il est devenu omniprésent en électronique. Plusieurs fabricants produisent une version améliorée de cet AOP, reconnaissable grâce au « 741 » présent dans leur dénomination. Depuis, des circuits plus performants ont été développés, certains basés sur des JFET (fin des années 1970), ou sur des MOSFET (début des années 1980). La plupart de ces AOP modernes peuvent se substituer à un μA741, dans un circuit de conception ancienne, afin d'en améliorer les performances.

Les amplificateurs opérationnels sont disponibles sous des formats, brochages, et niveaux de tensions d'alimentation standardisés. Avec quelques composants externes, ils peuvent réaliser une grande variété de fonctionnalités utiles en traitement du signal. La plupart des AOP standard ne coûtent que quelques dizaines de centimes d'euro, mais un AOP discret ou intégré avec des caractéristiques non standard et de faible volume de production peut coûter plus de 100 euros pièce.

Les principaux fabricants d'amplificateurs opérationnels sont : Analog Devices, Linear Technology, Maxim, National Semiconductor, STMicroelectronics et Texas Instruments[17].

Brochage

Brochage théorique d'un AOP

Un AOP dispose typiquement de deux entrées, deux broches d'alimentation et une sortie. L'entrée notée e+ est dite non inverseuse tandis que l'entrée e- est dite inverseuse, ceci en raison de leur rôle respectif dans les relations entrée/sortie de l'amplificateur. La différence de potentiel entre ces deux entrées est appelée tension différentielle d'entrée.

La broche d'alimentation positive repérée est parfois aussi appelée , , ou VS+. La broche d'alimentation négative repérée est parfois aussi appelée , , ou VS−. Le caractère doublé qui se trouve en indice de la lettre V fait référence au nom de la broche du transistor à laquelle cette alimentation sera généralement reliée[18]. Ainsi, les appellations et sont généralement réservées aux AOP bipolaires (C pour Collecteur et E pour Émetteur) tandis que les appellations et sont généralement réservées aux AOP à effet de champ (D pour Drain et S pour Source).

Suivant les applications, l'AOP peut aussi être doté de deux broches pour la compensation d'offset ainsi que d'une broche pour le réglage de la compensation fréquentielle.

Il existe des AOP possédant une sortie différentielle. De tels amplificateurs possèdent deux broches de sorties ainsi que quatre broches d'alimentation afin de pouvoir réaliser une isolation galvanique entre l'entrée et la sortie. Ces amplificateurs sont aussi appelés « amplificateurs d'isolement ».

Amplificateur opérationnel parfait

Caractéristique entrée sortie d'un amplificateur opérationnel parfait

La notion d'amplificateur opérationnel parfait ou idéal permet de raisonner sur le fonctionnement théorique de l'amplificateur opérationnel en s'affranchissant des phénomènes parasites et des limitations inhérents à la réalité technologique des composants. Les progrès réalisés depuis les premiers AOP tendent, par l'amélioration constante des performances, à se rapprocher du modèle de l'AOP parfait.

L'amplificateur opérationnel parfait possède une impédance d'entrée, un gain en mode différentiel, une vitesse de balayage et une bande passante infinis alors que son gain de mode commun et son impédance de sortie sont nuls. De plus, il n'a pas de tension d'offset ni de courant de polarisation[19],[20]. En réalité le gain différentiel d'un amplificateur opérationnel variant fortement en fonction de la fréquence, il est courant de le considérer comme infini afin de simplifier les calculs[19]. Il est aussi possible de considérer le gain d'un amplificateur opérationnel comme étant celui d'un intégrateur pur[21] afin de se rapprocher du comportement réel de l'amplificateur.

Ces caractéristiques traduisent le fait que l'amplificateur opérationnel parfait ne perturbe pas le signal qu'il va amplifier et que sa tension de sortie dépend uniquement de la différence de tension entre ses deux entrées.

La présence d'un gain différentiel infini implique que la moindre différence de potentiel entre les deux entrées de l'amplificateur l'amènera à saturer. Si l'on ne désire pas que la tension de sortie de l'amplificateur soit uniquement limitée à ± Vsat suivant le signe de la différence de potentiel entre les deux entrées de l'amplificateur, l'utilisation d'une contre-réaction négative est obligatoire.

La contre-réaction sur l'entrée inverseuse (ou contre-réaction négative) d'un AOP permet de soustraire une partie du signal de sortie au signal d'entrée de l'amplificateur. Grâce à cette soustraction, la contre-réaction négative permet de garder une différence de potentiel nulle en entrée de l'amplificateur. On parle alors de mode linéaire car on peut faire varier la tension de sortie entre +Vsat et - Vsat suivant la tension appliquée en entrée de l'amplificateur. L'absence de contre-réaction ou une contre-réaction sur l'entrée non inverseuse (ou réaction positive) de l'AOP amènera l'amplificateur en saturation positive ou négative suivant le signal appliqué en entrée. On parle alors de mode comparateur (ou saturé).

Mode linéaire - Application à un amplificateur non-inverseur

Montage amplificateur non-inverseur

Pour cette étude, l'amplificateur opérationnel utilisé est considéré parfait et fonctionne en « mode linéaire » car il utilise une contre-réaction sur l'entrée inverseuse de l'AOP. La contre-réaction sur l'entrée inverseuse permet d'effectuer une contre-réaction négative : toute augmentation de la tension de sortie va diminuer la tension différentielle d'entrée de l'AOP. Ainsi, la différence de tension entre les deux entrées de l'amplificateur est maintenue à zéro. De plus, l'impédance d'entrée étant infinie, aucun courant ne circule dans ces entrées. On retrouve donc la tension Ve en sortie du pont diviseur de tension non chargé formé par R2 et R1.

On obtient alors :

et donc :

Mode saturé - Application à un comparateur à deux seuils non-inverseur

Trigger de Schmitt non-inverseur

Pour cette étude, on considérera que l'amplificateur opérationnel utilisé est parfait, et qu'il fonctionne en « mode comparateur » car il utilise une contre-réaction sur l'entrée non inverseuse de l'AOP. La contre-réaction sur l'entrée non inverseuse permet d'effectuer une contre-réaction positive : toute augmentation de la tension de sortie va augmenter la tension différentielle d'entrée de l'AOP. Le gain différentiel de l'amplificateur étant infini, la tension de sortie Vs ne peut valoir que +Vcc ou -Vcc suivant le signe de la tension différentielle Vdiff.

Courbe entrée sortie d'un trigger de Schmitt.

La tension Ve, annulant la tension différentielle Vdiff, vaut donc :

Suivant le signe de Vs, on peut définir une tension de basculement positif VT+ faisant passer la sortie Vs de -Vcc à +Vcc, et une tension de basculement négatif VT- faisant passer Vs de +Vcc à -Vcc :

Tension de basculement positif :
Tension de basculement négatif :
T pour threshold, signifiant seuil.

Amplificateur opérationnel réel

Amplificateur opérationnel LM741 en boîtier DIP 8

Bien que le modèle parfait de l'AOP permette de calculer la fonction de transfert et de comprendre la plupart des montages à base d'AOP, les AOP réels possèdent un certain nombre de limitations par rapport à ce modèle.

L'AOP présente les défauts suivants : présence d'un offset en entrée, influence de la tension de mode commun (moyenne arithmétique des tensions des deux entrées) sur la tension de sortie, impédance non nulle en sortie, impédance non infinie en entrée et variation du gain en fonction de la fréquence. De plus, la tension de sortie peut être influencée par des variations de tension d'alimentation et possède une vitesse de balayage finie.

Gain différentiel et de mode commun

Caractérisation réelle d'un AOP

Le gain différentiel Gdiff d'un AOP réel est fini et varie en fonction de la fréquence. Pour un AOP compensé, la variation en fréquence du gain différentiel peut être assimilée à celle d'un système passe-bas du premier ordre dont le produit gain-bande passante est constant[22]:

Avec G0 le gain continu et f1, la fréquence de coupure à 3 dB. Le gain G0 vaut généralement entre 100 et 130 dB pour un AOP de précision et entre 60 et 70 dB pour un AOP rapide[20]. Pour les applications nécessitant une bande passante plus importante, il existe des AOP sous-compensés ou, plus rarement, non compensés. Pour ces amplificateurs, le constructeur précise le gain minimal pour lequel l'AOP reste inconditionnellement stable (pour plus d'informations, se référer au paragraphe compensation fréquentielle).

La tension de sortie d'un AOP ne dépend pas uniquement de la différence de tension entre ces deux entrées, elle dépend aussi de la moyenne de ces deux entrées (ou tension de mode commun). La relation entrée sortie d'un AOP s'établit ainsi :

Avec Gmc, le gain en mode commun. Afin de définir la capacité de l'amplificateur à rejeter le mode commun, on définit le taux de réjection du mode commun (TRMC) :

Le TRMC en continu varie entre 70 et 130 dB suivant l'amplificateur[20], mais il diminue fortement avec l'augmentation de la fréquence et est aussi dépendant des tensions d'alimentation.

Impédances d'entrée et de sortie

Modélisation d'un AOP comprenant les impédances d'entrées et de sortie

L'impédance d'entrée d'un AOP est due aux transistors d'entrées de celui-ci. L'entrée d'un AOP peut être modélisée par trois résistances : deux résistances de mode commun et une résistance différentielle. Les résistances de mode commun sont reliées entre une des deux entrées et le zéro tandis que la résistance différentielle est disposée entre les deux entrées différentielles. Ces résistances ont des valeurs comprises entre 105 et 1012 Ω suivant la technologie des transistors utilisés[23].

De plus, il existe en parallèle de chacune de ces résistances un condensateur dont la valeur peut varier de quelques pico Farad à 25 pF[23]. Ces condensateurs font chuter l'impédance d'entrée de l'amplificateur à haute fréquence. L'utilisation d'une boucle de contre-réaction multiplie l'impédance d'entrée par le gain, cette boucle permettant ainsi de diminuer l'effet de ces condensateurs sur le gain en haute fréquence. Les sources possédant aussi des capacités parasites faisant baisser leurs impédances en hautes fréquences[24], l'effet de l'impédance d'entrée d'un AOP, alimenté par une source de faible résistance, sur le système peut généralement être négligé[24],[25].

Pour les AOP utilisant une contre-réaction en courant, l'impédance de l'entrée non inverseuse peut elle aussi être modélisée par une résistance comprise entre 105 et 109 Ω en parallèle avec un condensateur[23]. L'entrée inverseuse peut être modélisée, quant à elle, par une charge réactive (condensateur ou inductance suivant l'AOP) en série avec une résistance comprise entre 10 et 100 Ω[23],[26].

L'impédance de sortie, notée RS, d'un AOP n'est pas nulle. Elle vaut entre 50 Ω et 200 Ω[27]. Cette impédance de sortie se traduit par une chute de la tension de sortie au fur et à mesure que le courant de charge augmente. Dans un montage utilisant une contre-réaction, l'impédance de sortie se trouve divisée par le gain de la boucle de contre-réaction ce qui permet de la ramener à une valeur proche du zéro idéal.

Tension de décalage et courants d'entrée

Conséquence de l'offset (Ua=Vs).

Lorsqu'un amplificateur opérationnel ne reçoit aucun signal sur ses entrées (lorsque ses entrées sont toutes les deux réunies à zéro), il subsiste généralement une tension continue de décalage de la tension de sortie vis-à-vis de zéro. Ce décalage (ou offset) provient de deux phénomènes : la tension de décalage propre aux circuits internes de l'AOP d'une part, et l'influence des courants de polarisation[28] de la paire différentielle des transistors d'entrée sur le circuit extérieur d'autre part.

La tension de décalage représente la différence de tension qu'il faudrait appliquer entre les deux entrées d'un AOP en boucle ouverte, quand on a relié une des entrées au zéro, pour avoir une tension de sortie nulle. Cette tension d'offset peut être représentée en série avec l'entrée non inverseuse[29] ou inverseuse[30].

Modélisation d'un AOP comprenant les courants de polarisation et la tension de décalage

Ce défaut provient des imperfections technologiques de l'amplificateur opérationnel. Elles se traduisent par un déséquilibre en tension, lié par exemple aux dissymétries de VBE des transistors de l'étage différentiel d'entrée dans un AOP à transistors bipolaires. D'autres imperfections, comme les dissymétries de gain et de composants internes s'ajoutent aux causes de ce déséquilibre. En effet l'erreur en sortie peut s'écrire comme le produit du gain par la tension de décalage d'entrée, plus la tension de décalage de l'amplificateur de sortie. Suivant le montage de l'AOP et le gain désiré, l'erreur de l'étage d'entrée ou celle de l'étage de sortie sera prépondérante. Dans un amplificateur de mesure, le gain peut être important, rendant prépondérante l'erreur due à l'étage d'entrée. Dans le cas de montages à faible gain, la tension de décalage de l'étage de sortie devra être prise en compte. Les amplificateurs de précision sont ajustés par laser pour limiter ce décalage. Certains amplificateurs proposent également d'annuler la tension de décalage par utilisation d'un potentiomètre externe.

Pour les AOP standard, la tension de décalage vaut entre 50 et 500 µV, mais elle varie de µV pour les amplificateurs de type chopper à 50 mV pour les moins bons AOP CMOS[30]. Généralement, les AOP de type bipolaire sont ceux qui offrent les tensions de décalage les plus faibles, en particulier lorsque les transistors de l'étage différentiel d'entrée sont parfaitement appariés[30]. La tension d'offset est dépendante de la température. Ceci est un critère important influant sur les performances des montages, en particulier intégrateurs. Selon les modèles d'AOP elle varie de quelques dizaines de µV/°C pour les AOP classiques à 0,1 µV/°C pour les AOP de précision[31]. L'influence du vieillissement sur la tension de décalage est également à prendre en considération dans le cas de montages de précision.

Les courants traversant chacune des entrées de l'AOP lorsque aucun signal ne lui est appliqué proviennent des courants de polarisation des transistors d'entrée. On définit un courant de polarisation qui est la moyenne entre les courants de polarisation traversant les deux entrées et un courant de décalage dit « courant d'offset » qui est la différence entre les courants de polarisation traversant les deux entrées. Le courant de polarisation peut varier de 60 fA à plusieurs µA[32]. Le courant d'offset est lui aussi dépendant de la température. Il peut varier de quelques dizaines de nA/°C à quelques pA/°C, voire des valeurs encore inférieures.

Vitesse de balayage

Effet du slew-rate : en rouge la tension désirée, en vert la tension obtenue

La vitesse de balayage (ou slew rate) représente la vitesse de variation maximale de tension que peut produire un amplificateur. Lorsque la vitesse de variation du signal de sortie d’un amplificateur est supérieure à sa vitesse de balayage, sa tension de sortie est une droite de pente .

.

La vitesse de balayage est exprimée en V/µs.

Dans un AOP, le slew-rate dépend généralement du courant maximum que peut fournir l'étage différentiel. L'étage différentiel fournit à l'étage d'amplification de tension un courant proportionnel à la différence de tension entre les deux entrées. Ce courant sert majoritairement à charger la capacité de compensation interne C présente dans l'étage d'amplification en tension. La relation courant / tension est alors celle d'un condensateur :

Le courant maximum que peut fournir l'étage d'entrée étant égal à deux fois le courant de polarisation traversant le collecteur d'un des transistors d'entrée, le slew-rate peut s'obtenir de la façon suivante :

Pour un µA741, le courant de polarisation =10 µA et la capacité de compensation interne C=30