Espace à base dénombrable

En mathématiques, plus précisément en topologie, un espace est dit à base dénombrable si sa topologie admet une base dénombrable. La plupart des espaces usuels de l'analyse et beaucoup d'espaces en analyse fonctionnelle sont à base dénombrable.

Propriétés

Notes et références

  1. Voir Lemme de Lindelöf.
  2. Un tel espace est (par définition) séparé.
  3. L'espace des fonctions croissantes de [0, 1] dans [0, 1], muni de la topologie de la convergence simple : (en) Lech Drewnowski, « Continuity of monotone functions with values in Banach lattices », dans K. D. Bierstedt, J. Bonet, M. Maestre et J. Schmets, Recent Progress in Functional Analysis, Elsevier, (ISBN 978-0-08051592-2, lire en ligne), p. 185-200 (p. 196).
  4. (en) K. D. Joshi, Introduction To General Topology, New Age International, , 412 p. (ISBN 978-0-85226-444-7, lire en ligne), p. 213.

Article connexe

Fonctions cardinales d'un espace topologique

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Sharealike. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.