Fonction caractéristique (théorie des ensembles)

En mathématiques, une fonction caractéristique, ou fonction indicatrice, est une fonction définie sur un ensemble E qui explicite l’appartenance ou non à un sous-ensemble F de E de tout élément de E.

Cet article concerne les fonctions caractéristiques en théorie des ensembles. Pour les articles homonymes, voir Fonction caractéristique. Pour les fonctions indicatrices en analyse convexe, voir Fonction indicatrice (analyse convexe).
Le graphe de la fonction indicatrice d'un sous-ensemble à deux dimensions d'un carré.

Formellement, la fonction caractéristique d’un sous-ensemble F d’un ensemble E est une fonction :

Une autre notation souvent employée pour la fonction caractéristique de F est 1F, parfois aussi I (i majuscule).

Le terme de fonction indicatrice est parfois utilisé pour fonction caractéristique. Cette dénomination évite la confusion avec la fonction caractéristique utilisée en probabilité mais en induit une autre, avec la fonction indicatrice en analyse convexe.

(Attention : la fonction 1F peut désigner aussi la fonction identité).

Propriétés

Si A et B sont deux sous-ensembles de E alors

et

L'application

est une bijection, de l'ensemble des parties de E dans l'ensemble {0, 1}E des applications de E dans {0, 1}.

La bijection réciproque est l'application

,

f −1({1}) désigne l'image réciproque par f du singleton {1}, c'est-à-dire la partie de E constituée des éléments x tels que f(x) = 1.

Continuité

Si F est une partie d'un espace topologique E et si la paire {0, 1} est munie de la topologie discrète (qui est la topologie induite par la topologie usuelle de ℝ), l'ensemble des points de E en lesquels la fonction χF : E → {0, 1} est discontinue est la frontière de F.

Exemple : E = ℝ et F =
χ : ℝ → {0, 1} est la fonction qui associe 1 à tout rationnel et 0 à tout irrationnel.
La fonction de Dirichlet : ℝ → ℝ est définie de la même manière (autrement dit : sa corestriction à {0, 1} est χ).
Dans ℝ, la frontière de ℚ est ℝ (puisque ℚ et ℝ\ℚ sont denses dans ℝ) donc χ est discontinue partout.
La fonction de Dirichlet est donc également discontinue partout.

Mesurabilité

Si (E, Ω) est un espace mesurable (c'est-à-dire si Ω est une tribu sur E), une partie de E est un ensemble mesurable (c'est-à-dire appartient à cette tribu) si et seulement si son indicatrice est une fonction mesurable.

Voir aussi

Articles connexes

Bibliographie

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Sharealike. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.