Fougère de Barnsley

La fougère de Barnsley est une fractale nommée d'après le mathématicien Michael Barnsley qui l'a décrite pour la première fois dans son livre Fractals Everywhere[1].

Une fougère de Barnsley tracée avec VisSim.

Construction

La fougère de Barnsley est l'attracteur d'une famille de quatre applications affines[2]. La formule pour une application affine est la suivante :

Dans le tableau, les colonnes "a" à "f" sont les coefficients de l'équation et "p" représente le facteur de probabilité.

w a b c d e f p Portion generated
ƒ1 0 0 0 0.16 0 0 0.01 Tige
ƒ2 0.85 0.04 −0.04 0.85 0 1.60 0.85 Petites folioles
ƒ3 0.20 −0.26 0.23 0.22 0 1.60 0.07 Grandes folioles de gauche
ƒ4 −0.15 0.28 0.26 0.24 0 0.44 0.07 Grandes folioles de droite

Celles-ci correspondent aux transformations suivantes:

Programmation de la fonction

Le premier point tracé est à l'origine (x0 = 0, y0 = 0) puis les nouveaux points sont calculés de manière itérative en appliquant de manière aléatoire l'une des quatre transformations de coordonnées suivantes:

ƒ1

xn + 1 = 0
yn + 1 = 0.16 yn.

Cette transformation de coordonnées est choisie 1% du temps et correspond à un point du premier segment de ligne situé à la base de la tige. Cette partie de la figure est la première à être complétée au cours des itérations

ƒ2

xn + 1 = 0.85 xn + 0.04 yn
yn + 1 = −0.04 xn + 0.85 yn + 1.6.

Cette transformation de coordonnées est choisie 85% du temps et correspond à un point à l'intérieur d'un pavillon.

ƒ3

xn + 1 = 0.2 xn  0.26 yn
yn + 1 = 0.23 xn + 0.22 yn + 1.6.

Cette transformation de coordonnées est choisie 7% du temps et correspond à un point à l'intérieur d'un pavillon (avec inversion).

ƒ4

xn + 1 = −0.15 xn + 0.28 yn
yn + 1 = 0.26 xn + 0.24 yn + 0.44.

Cette transformation de coordonnées est choisie 7% du temps et correspond à point à l'intérieur d'un pavillon (sans inversion).

Notes et références

  1. Fractals Everywhere, Boston, MA: Academic Press, 1993, (ISBN 0-12-079062-9)
  2. Robert Ferreol, « Fougère », sur mathcurve (consulté le 1er décembre 2018)

Articles connexes

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Sharealike. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.