Majorant ou minorant

En mathématiques, soient (E , ≤) un ensemble ordonné et F une partie de E ; un élément x de E est :

  • un majorant de F s'il est supérieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F :
    ;
  • un minorant de F s'il est inférieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F :
    .
  • Si F possède un majorant x alors on dit que F est une partie majorée.
  • Si F possède un minorant x alors on dit que F est une partie minorée.

Exemples

  • Pour l'intervalle ]0 ; 10[, partie de l'ensemble R des nombres réels ordonné par l'ordre usuel ≤ : 10 et 11 sont des majorants alors que 0 et -1 sont des minorants.
  • [0,+∞[ n'a pas de majorant dans R.

Notions connexes

  • Portail des mathématiques

[[Catégorie:Théorie des ordres

Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Sharealike. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.